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Other group activities

 The research team is heavily involved with high-
performance reconfigurable computing, evaluation
of new hardware (such as multicore CPUs), as well
as associated languages and tools

 GWU is co-host of CHREC
http://www.chrec.ufl.edu/ ; ARSC is a charter
member

 Recent publications include an analysis of high
level languages for FPGAs

 Next week: multicore symposium (accessible via
AccessGrid).  See www.arsc.edu
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String Matching is the basis for sequence alignment
(Introduction)

 String Matching
0 Detecting the occurrence of a particular substring, called

the pattern, in another string, called the text

 Types of String matching:
0 Exact string matching
0 Approximate string matching

 Exact string matching:
0 Involves match patterns, where they exist completely, that

is unbroken and with no irrelevant data in between any
letters

0 Numerous Applications : NIDS, text editing, …etc.

 Approximate string matching:
0 Pattern rarely matches the text completely
0 Finds application in Computational biology (DNA sequence

alignment), image detection, handwriting recognition…etc.
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Sequence Alignment
(Smith-Waterman Algorithm)

 Why align two protein or DNA sequences?
0 Determine whether they are descended from a common ancestor

(homologous)
0 Infer a common function
0 Locate functional elements
0 Infer protein structure, if the structure of one of the sequences is

known

 S-W genomic comparison and alignment algorithm
0 Similar to BLAST, but 10x slower
0 Provably optimum- the “gold standard” for alignment algorithms
0 Based on Dynamic Programming

 Two-step process
0 Create scoring matrix and find maximum score

 “forward pass”
0 Work back to determine alignment

 “traceback”
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Sequence Alignment Algorithms

 Dynamic Programming
0 Break large problems into smaller, simpler sub

problems
0 Solve sub problems optimally and recursively
0 Use these optimal solutions to construct an

optimal solution for the original problem

 The Smith-Waterman algorithm
0 Implements the dynamic programming technique
0 Performs local sequence alignment; that is, for

determining similar regions between two
nucleotide or protein sequences
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Global vs. Local Alignment

Global Alignment

Local Alignment

Best match between
subsequences

Best match between
complete sequencesSequence 1

Sequence 1

Sequence 2

Sequence 2

?
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Implementation for Hardware

Cellular Automata Approach
0 Matrix elements are identical PEs/Cells
0 Cells communicate with their neighbors

updating the local scores and propagating the
maximum local score

0 Maximum score found in the last cell calculated

Virtualization & Scheduling
0 Using sliding window to traverse entire virtual

scoring matrix
0 Last column of every iteration is fed back to the

first column in the following iteration
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Anti-Diagonal Wave-front
Data Dependency

Database Sequence

Query Sequence

 Working PEs/Cells
Computational Flow 

0 All cells along the
same anti-diagonal
are independent
 Can be computed in

parallel
0 Matrix is filled anti-

diagonally
 Completed PEs/Cells
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Implementation for Hardware (cnt’d)
(32x1 Sliding Window)

Q1
QESESABATAD

32 Residue
Window

Size
(Node 1)

Unlimited Database Size
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Data Transfers Scenario

Microprocessor
Memory

FPGA

QDR 2……

QDR 1……

Sending Data to
QDR 1

Data Sent From QDR1
to FPGA for
Processing

Clock Cycles 0 - 31 32 symbols,1 every clock

Clock Cycles 32 - 63

S-W Scoring on FPGA

Maximum Score sent
to QDR 2

FPGA Sets Done Flag
Sending Max
Score From

QDR 2 to RAM
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Implementation for Hardware (cnt’d)
(MPI Implementation)

…

…

…
Query

Sequences

Database
Sequences

Node 0

Node 1

Node N-1

Score Array

BroadCast
DBs

Scatter
Queries

Processing

Gather
Scores

Done
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Cray XD1 System Architecture
(Six Chassis)

Compute
 12 AMD Opteron 32/64

bit, x86 processors
 High Performance Linux
RapidArray Interconnect
 12 communications

processors
 1 Tb/s switch fabric
Active Management
 Dedicated processor
Application Acceleration
 6 co-processors
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 System Network Interconnect (Hi-Bar) sustains 1.4 GB/s per port with
180 ns latency per tier

 Up to 256 input and 256 output ports with two tiers of switch

 Common Memory (CM) has controller with DMA capability

 Controller can perform other functions such as scatter/gather

 Up to 8 GB DDR SDRAM supported per CM node

SRC Hi-BarTM Based Systems
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MPI Utilization on SRC-6

Unutilized uP/FPGA
uP: Microprocessor

0 Network Interface Cards cannot be efficiently shared
 Only two MPI processes were implemented
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MPI Utilization on Cray-XD1

IP: Interface Processor
uP: Microprocessor (Opteron)

Unutilized uP/FPGA

0 All Nodes were exploited using MPI
 However, only one of the two microprocessors on each node

sufficed
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Performance Results
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Smith-Waterman Scalability on SRC-6
(window of 32x1 DNA residues)

Database Size = 64K DNA Residues

Query Size = 64x32 DNA Residues
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Time Distribution of Smith-Waterman on SRC-6
(window of 32x1 DNA residues)
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Time Distribution of Smith-Waterman on SRC-6
(window of 32x1 DNA residues)

MPI Time Distribution
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Time Distribution of Smith-Waterman on SRC-6
(window of 32x1 DNA residues)

MPI Time Distribution
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Smith-Waterman Scalability on SRC-6
(window of 32x1 Protein residues)

Database Size = 64K Protein Residues

Query Size = 64x32 Protein Residues

(1 Engine / Chip)

0

1

2

3

4

0 1 2 3 4 5

Number of Chips

E
n

d
-t

o
-E

n
d

 

S
p

e
e

d
u

p



29

MPI Time Distribution

(2 Nodes, 4 Chips)
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Smith-Waterman Scalability on XD1
(window of 32x1 DNA residues)

Query Size = 64x32 Residues

(1 Engine / Chip)
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Smith-Waterman Scalability on XD1
(window of 32x1 DNA residues)

Query Size = 64x32 Residues

(1 Engine / Chip)
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Time Distribution of Smith-Waterman on XD1
(window of 32x1 DNA residues)

MPI Time Distribution
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MPI Overhead and Computation Speedup
(window of 32x1 DNA residues)

Database Size = 64K DNA Residues

Query Size = 64x32 DNA Residues
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Smith-Waterman Scalability on XD1
(window of 32x1 Protein residues)

Query Size = 64x32 Protein Residues

(1 Engine / Chip)
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Smith-Waterman Scalability on XD1
(window of 32x1 Protein residues)

Query Size = 64x32 Protein Residues

(1 Engine / Chip)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7

Number of Processors

S
p

e
e
d

u
p

Database Size = 64K

Database Size = 32K

Database Size = 16K

Database Size = 1K



38

Time Distribution of Smith-Waterman on XD1
(window of 32x1 Protein residues)

MPI Time Distribution

(6 Nodes, 6 Chips)
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Database Size = 64K DNA Residues

Query Size = 64x32 DNA Residues

(1 Engine / Chip)
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34x313x6x1138Smith-Waterman
(DNA Sequencing)

SAVINGS

Cost Savings Size ReductionPower Savings
SpeedupApplication

Savings of HPRC
(Based on SRC-6)

 Assumptions
0 100% cluster efficiency
0 Cost Factor µP : RP  1 : 200
0 Power Factor µP : RP  1 : 3.64

 Reconfigurable processor (based on SRC-6): 200 W
 µP board (with two µPs): 220 W

0 Size Factor µP : RP  1 : 33.3
 Cluster of 100 µPs = four 19-inch racks

» footprint = 6 square feet
 Reconfigurable computer (SRC MAPstationTM)

» footprint = 1 square feet
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29x140x28x2794Smith-Waterman
(DNA Sequencing)

SAVINGS

Cost Savings Size ReductionPower Savings
SpeedupApplication

Savings of HPRC
(Based on one Cray-XD1 chassis)

 Assumptions
0 100% cluster efficiency
0 Cost Factor µP : RP  1 : 100
0 Power Factor µP : RP  1 : 20

 Reconfigurable processor (based on one XD1 Chassis):
2200 W

 µP board (with two µPs): 220 W
0 Size Factor µP : RP  1 : 95.8

 Cluster of 100 µPs = four 19-inch racks
» footprint = 6 square feet

 Reconfigurable computer (one XD1 Chassis)
» footprint = 5.75 square feet
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Conclusions

 Potential of using multi-node HPRCs for
computational biology applications investigated

 Scalability issues for S-W algorithm were
characterized

 Orders of magnitude speedup demonstrated

 Scalability on both machines proved almost ideal
when the number of nodes increased

 As number of nodes exceed a certain limit,
scalability will decrease due to communications
overhead

 FPGA local memory still relatively small compared
to the problem size


