

UNIVERSITY WASHINGTON DC

DNA and Protein Sequence Alignment with High Performance Reconfigurable Systems

Mohamed Abouellail, Esam El-Araby, Mohamed Taher, and Tarek El-Ghazawi, George Washington University Gregory B. Newby, Arctic Region Supercomputing Center

Presentation at AHS-2007, Edinburgh. Wednesday August 8 2007

Outline

♦ A word from your presenters...

Introduction

- Implementation Approach
- Testbeds
- Experimental Results
- Conclusions

Other group activities

- The research team is heavily involved with highperformance reconfigurable computing, evaluation of new hardware (such as multicore CPUs), as well as associated languages and tools
- GWU is co-host of CHREC <u>http://www.chrec.ufl.edu/</u>; ARSC is a charter member
- Recent publications include an analysis of high level languages for FPGAs
- Next week: multicore symposium (accessible via AccessGrid). See <u>www.arsc.edu</u>

String Matching is the basis for sequence alignment (Introduction)

String Matching

0 Detecting the occurrence of a particular substring, called the pattern, in another string, called the text

Types of String matching:

- 0 Exact string matching
- **0** Approximate string matching

Exact string matching:

- 0 Involves match patterns, where they exist completely, that is unbroken and with no irrelevant data in between any letters
- **0** Numerous Applications : NIDS, text editing, ...etc.

Approximate string matching:

- **0** Pattern rarely matches the text completely
- 0 Finds application in Computational biology (DNA sequence alignment), image detection, handwriting recognition...etc.

Sequence Alignment

(Smith-Waterman Algorithm)

Why align two protein or DNA sequences?

- 0 Determine whether they are descended from a common ancestor (homologous)
- 0 Infer a common function
- **0** Locate functional elements
- Infer protein structure, if the structure of one of the sequences is known

S-W genomic comparison and alignment algorithm

- 0 Similar to BLAST, but 10x slower
- **0** Provably optimum- the "gold standard" for alignment algorithms
- **0** Based on Dynamic Programming

Two-step process

- **0** Create scoring matrix and find maximum score
 - "forward pass"
- **0** Work back to determine alignment
 - "traceback"

Sequence Alignment Algorithms

Dynamic Programming

- 0 Break large problems into smaller, simpler sub problems
- **0** Solve sub problems optimally and recursively
- 0 Use these optimal solutions to construct an optimal solution for the original problem
- The Smith-Waterman algorithm
 - **0** Implements the dynamic programming technique
 - Performs local sequence alignment; that is, for determining similar regions between two nucleotide or protein sequences

Global vs. Local Alignment

Outline

Introduction

Implementation Approach

- Testbeds
- Experimental Results
- Conclusions

Cellular Automata Approach

- **0** Matrix elements are identical PEs/Cells
- 0 Cells communicate with their neighbors updating the local scores and propagating the maximum local score
- **0** Maximum score found in the last cell calculated
- Virtualization & Scheduling
 - 0 Using sliding window to traverse entire virtual scoring matrix
 - **0** Last column of every iteration is fed back to the first column in the following iteration

Anti-Diagonal Wave-front Data Dependency

- All cells along the same anti-diagonal are independent
 - Can be computed in parallel
- 0 Matrix is filled antidiagonally

- Completed PEs/Cells
- Working PEs/Cells
- → Computational Flow

Computing the Similarity Matrix

~

_

.

-

Implementation for Hardware (cnt'd) (32x1 Sliding Window)

Data Transfers Scenario

Implementation for Hardware (cnt'd)

(MPI Implementation)

Outline

Introduction

Implementation Approach

• <u>Testbeds</u>

- Experimental Results
- Conclusions

Cray XD1 System Architecture (Six Chassis)

Compute

- 12 AMD Opteron 32/64 bit, x86 processors
- High Performance Linux

RapidArray Interconnect

- 12 communications processors
- 1 Tb/s switch fabric

Active Management

Dedicated processor

Application Acceleration

6 co-processors

SRC Hi-Bar[™] Based Systems

- System Network Interconnect (Hi-Bar) sustains 1.4 GB/s per port with 180 ns latency per tier
- Up to 256 input and 256 output ports with two tiers of switch
- Common Memory (CM) has controller with DMA capability
- Controller can perform other functions such as scatter/gather
- Up to 8 GB DDR SDRAM supported per CM node

Outline

- Introduction
- Implementation Approach
- Testbeds
- ♦ Experimental Results
- Conclusions

MPI Utilization on SRC-6

uP: Microprocessor

0 Network Interface Cards cannot be efficiently shared

Only two MPI processes were implemented

MPI Utilization on Cray-XD1

⊗ Unutilized uP/FPGA IP: Interface Processor uP: Microprocessor (Opteron)

- **0** All Nodes were exploited using MPI
 - However, only one of the two microprocessors on each node sufficed

Performance Results

			Expected		Measured			
					Throughput (GCUPS)	Speedup	Throughput (GCUPS)	Speedup
FASTA		Opteron	DNA		NA	NA	0.065	1
SSEARCH34		2.4GHz	Protein		NA	NA	0.130	1
	SRC 100 MHz (32x1)		DNA	1 Engine/Chip	3.2	49.2	3.19 → 12.2 1 →4 Chips	49 → 188 1→4 Chips
GWU				4 Engines/Chip	12.8	197	12.4 → 42.7 1 →4 Chips	191 → 656 1→4 Chips
				8 Engines/Chip	25.6	394	24.1 → 74 1→ 4 Chips	371 → 1138 1→4 Chips
			Protein		3.2	24.6	3.12 → 11.7 1 →4 Chips	24 → 90 1→4 Chips
	XD1 200 MHz (32x1)		1 Engine/Chip	6.4	98	5.9 → 32 MPI 1→6 nodes	91 → 492 MPI 1→6 nodes	
		XD1	DNA	4 Engines/Chip	25.6	394	23.3 → 120.7 MPI 1→6 nodes	359 → 1857 MPI 1→6 nodes
		lz (32x1)		8 Engines/Chip	51.2	788	45.2 → 181.6 MPI 1→6 nodes	695 → 2794 MPI 1→6 nodes
			Protein		6.4	49	5.9 → 34 MPI 1→6 nodes	45 → 262 MPI 1→6 nodes

Smith-Waterman Scalability on SRC-6 (window of 32x1 DNA residues)

Protein

Smith-Waterman Scalability on SRC-6

Smith-Waterman Scalability on XD1

Smith-Waterman Scalability on XD1

MPI Overhead and Computation Speedup

(window of 32x1 DNA residues)

34

Protein

Smith-Waterman Scalability on XD1

Smith-Waterman Scalability on XD1

MPI Overhead and Computation Speedup

Savings of HPRC (Based on SRC-6)

	Speedup	SAVINGS			
Application		Cost Savings	Power Savings	Size Reduction	
Smith-Waterman (DNA Sequencing)	1138	6x	313x	34x	

Assumptions

- 0 100% cluster efficiency
- 0 Cost Factor $\mu P : RP \rightarrow 1 : 200$
- **0** Power Factor $\mu P : RP \rightarrow 1 : 3.64$
 - Reconfigurable processor (based on SRC-6): 200 W
 - μP board (with two μPs): 220 W
- 0 Size Factor $\mu P : RP \rightarrow 1 : 33.3$
 - Cluster of 100 µPs = four 19-inch racks
 - » footprint = 6 square feet
 - ♦ Reconfigurable computer (SRC MAPstation[™])
 - » footprint = 1 square feet

Savings of HPRC

(Based on one Cray-XD1 chassis)

Application	Snoodun	SAVINGS			
Application	Speedup	Cost Savings	Power Savings	Size Reduction	
Smith-Waterman (DNA Sequencing)	2794	28x	140x	29x	

Assumptions

- 0 100% cluster efficiency
- 0 Cost Factor $\mu P : RP \rightarrow 1 : 100$
- **0** Power Factor $\mu P : RP \rightarrow 1 : 20$
 - Reconfigurable processor (based on one XD1 Chassis): 2200 W
 - μP board (with two μPs): 220 W

0 Size Factor $\mu P : RP \rightarrow 1 : 95.8$

- Cluster of 100 µPs = four 19-inch racks
 - » footprint = 6 square feet
- Reconfigurable computer (one XD1 Chassis)
 - » footprint = 5.75 square feet

Outline

Introduction

- Implementation Approach
- Testbeds
- Experimental Results
- ♦ Conclusions

Conclusions

- Potential of using multi-node HPRCs for computational biology applications investigated
- Scalability issues for S-W algorithm were characterized
- Orders of magnitude speedup demonstrated
- Scalability on both machines proved almost ideal when the number of nodes increased
- As number of nodes exceed a certain limit, scalability will decrease due to communications overhead
- FPGA local memory still relatively small compared to the problem size